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Differential Kinematics
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Guiding Question

• In robotic applications, not only the position and 

orientation, but the velocity of the end-effecter is also to 

be monitored and controlled.

• How can the velocity of the end-effector be calculated?

• In order to move the end-effecter in a specified direction 

with a specified speed, it is necessary to coordinate the 

speeds of the individual joints

• Fundamental methods are to be developed for achieving 

such coordinated joint motion in multiple-joint robotic 

systems.

• We derive the differential relationship between the joint 

displacements and the end-effecter location, and then 

solve for the individual joint motions.
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Differential Relationship
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Generalized Co-ordinate, q
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Jacobian: Direct Differentiation

• End-effector position x

• End-effector diflection δx
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Jacobian: Direct Differentiation

• Due to a “small movements” of individual 

joints at the current position δq, the 

resultant motion of the end-effecter is δx. 

Jacobian matrix (matrix of partial 

derivatives) relate δq to δx

• Those small movements are divided by δt 

to derive the relationship between joint 

and Cartesian velocities
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Example

• Forward kinematics of the 

planner manipulator.
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• The differential relationship is
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Example
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Jacobian
• Jacobian provides the relationship 

between the joint velocities and the 
resultant end-effecter velocity

• Jacobian can be resolved as follows
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• In general, each column vector of 

the Jacobian represents the end-

effecter velocity and angular 

velocity generated by the individual 

joint velocity while all other joints 

are immobilized
T
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Homework: Joint Velocity Profile

• For the planner two-link manipulator 

shown, determine the end-effector

velocity profile for the following 10s

motion

θ(0s)   = (0°,0°)T

θ(5s)   = (45°,90°) T

θ(10s) = (90°,0°) T

Assume L1 = 10cm, L2 = 8cm

• Write Malab m-file, to draw end-

effector speed in x and y directions 

L1

L2
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Singular Arm Configurations

• As long as J1 and J2 are not 

aligned, velocities of the two joints 

can be set accordingly to make the 

end-effector move in any direction.

• Directions of J1 and J2 are 

configuration-dependant, and when 

they are aligned, end-effector is 

only movable along that direction.

• Such arm configurations are known 

as singular arm configurations
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• Singularities 

occur in planner 

two-link arm 

when θ2 = 0°,or 

180°

Singular Arm Configurations
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At singularity configurations

Column vectors 

line up each other
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Determinant of J and Singularity
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Inverse Kinematics of Differential Motion

• Resolve end-effector velocity into velocities of individual 

joints. Whenever Jacobian is not singular, inverse kinematics 

can be solved as follows

• The solution is unique, unlike the inverse kinematics of end-

effector position, where multiple solutions exist.

• This mapping can be used for robot manipulator control as 

proposed (Resolved Motion Rate Control. Daniel Whitney 

1969]
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Motion Near Singularities
Consider the two-link 

planner articulated robot 

arm. We want to move 

the endpoint at a 

constant speed along a 

path staring at point 

A(2,0), go close to the 

origin through B(ε,0) 

and C(0,ε), and reach 

the final point D(0,2)

Assume each arm link is 

of unit length and obtain 

the profiles of the 

individual joint 

velocities.

Comment on joint 

velocities in B – C 

segment of the motion15

Motion Near Singularities cntd.
• By inverting velocity kinematics
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Motion Near Singularities cntd.

• Very high joint 

velocities are 

resulted at points 

A and D, which 

are the arm’s 

singular 

configurations 

(θ2=0°)

• Close to the 

origin (θ2≈–180°), 
the velocity of the 

first joint 

becomes very 

large in order to 

quickly turn the 

arm from B to C, 
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Singularity Analysis
• When the arm is fully extended (θ2=0°). For position A (θ1=0°).

both joints generate endpoint velocity along the y-axis, thus, the motion is 
restricted along vertical direction.

• When the arm is flexed (θ2≈180° B, and C positions)

First joint does not produce any contribution to endpoint motion
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Jacobian of a 3-Link Arm

• Lock joint 2 and 3, move joint 

1 with unit ang rate and find 

endpoint velocity → [J1]

• Lock joint 1 and 3, move joint 

2 with unit ang rate and find 

endpoint velocity → [J2]

• Lock joint 1 and 2, move joint 

3 with unit ang rate and find 

endpoint velocity → [J3]

• Determine Jacobian as

J = [J1 J2 J3]

• Find singularities by |J|=0
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Singularity and Redundancy

• Sometimes, such singular configurations exist in the middle

of the workspace seriously degrading mobility and 

manipulatability of the robot

• To overcome this difficulty, endpoint trajectories can be 

planned away from singular configurations. Alternatively, 

additional degrees of freedom should be included so that 

even when some degrees of freedom are lost at certain 

configurations, the robot can still maintain an adequate 

number of degrees of freedom (Redundant Manipulators).

• To locate the endpoint at any position with any orientation, a 
planner manipulator needs 3 variables (xe,ye,φe), whereas a 

spacial manipulator needs 6 variables (xe,ye,ze,φx ,φy,φz). Same 

number of degrees of freedom are required for non-

redundent planner and  special arms.
20



12×1

Jacobian of 

the SC Arm
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By Partial Differentiation

Position Jacobian
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SCA Orientation Jacobian

9×1

3×1

3×1

3×19×1 9×6 6×1
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3×1

3×1

3×1

Stanford Schinman Arm
By Partial Differentiation
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3×1

3×1

3×1

3×1

9×1

4×1

Representations
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Total Jacobian

Jacobian depends on the representation 
and arm configuration
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