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Differential Kinematics

Acknowledgement :
Prof. Oussama Khatib, Robotics Laboratory, Stanford University, USA
Prof. Harry Asada, Al Laboratory, MIT, USA

Guiding Question

In robotic applications, not only the position and
orientation, but the velocity of the end-effecter is also to
be monitored and controlled.

How can the velocity of the end-effector be calculated?

In order to move the end-effecter in a specified direction
with a specified speed, it is necessary to coordinate the
speeds of the individual joints

Fundamental methods are to be developed for achieving
such coordinated joint motion in multiple-joint robotic
systems.

We derive the differential relationship between the joint
displacements and the end-effecter location, and then
solve for the individual joint motions.
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Jacobian: Direct Differentiation

* Due to a “small movements” of individual

joints at the current position 84, the X = J&]
resultant motion of the end-effecter is ox.

Jacobian matrix (matrix of partial Ox —J &l
derivatives) relate dq to ox S5 - S5
Those small movements are divided by ot X = Jq

to derive the relationship between joint

and Cartesian velocities x=(%,,7,).4=(6,.6,)

Example

+ Forward kinematics of the
planner manipulator.

x, = [l cos@ +1,cos(6 +86,)
y, = [ sin@ +1,sin(6,+86,)
y = 6 +6,

» The differential relationship is

5. = Pesg 4% s,
6, 96,

dy, dy

= =200, +—=06

6.)](3 ae] 1 892 2
oy = 006, + 00,
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Example
—1 sin6,—1,sin(6, +6,) —1,sin(6,+86,)
J(6,,6,)=| [ ,cosf +1,cos(6,+86,) [ ,cos(6 +6,)
1 1
-y, —Lsin(6,+6,)
J(6,.,6,)=| x, [L,cos(6 +86,)
1 1




Jacobian y 5,

+ Jacobian provides the relationship
between the joint velocities and the
resultant end-effecter velocity

» Jacobian can be resolved as follows

I=[3,]3.1

x=J,6+1,6,

6, Link 1

Joint 2

+ For the planner two-link manipulator ”

* In general, each column vector of 0
the Jacobian represents the end-
effecter velocity and angular
velocity generated by the individual
joint velocity while all other joints

are immobilized o T
(X, 9,2,0,0,.0.)

p=J1q1+.”+ann

Homework: Joint Velocity Profile

shown, determine the end-effector
velocity profile for the following 10s
motion

&0s) = (0°,0°)7
A5s) =(45°90°)T
A10s) = (90°,0°) T
Assume L, =10cm, L,= 8cm x

Joint 2

\'91 Link 1

» Write Malab m-file, to draw end-
effector speed in x and y directions

Singular Arm Configurations

ry

)

x=1J,6+1,6,

* Aslong as J, and J, are not
aligned, velocities of the two joints
can be set accordingly to make the
end-effector move in any direction.

+ Singularities

+ Directions of J, and J, are foint 1
configuration-dependant, and when
they are aligned, end-effector is
only movable along that direction.

» Such arm configurations are known
as singular arm configurations

Singular Arm Configurations

Non-singular

occur in planner

two-link arm
when 6, = 0°,or
° Singular y
%0 Cormm
Jl >y
36.6,) = —I sin@,—1,sin(6,+6,) —1,sin(6 +86,)
l,cos@, +1,cos(6,+6,) [,cos(6 +86,)

At singularity configurations
—(,+1,)sin6, —1,sin6,
([, +1,)cos6, I, cosb

0,-0°
Column vectors

B (_ll + lz) sin 91 lz sin 91 line up each other
6,=180°

(l, =1,)cos@, —1,cos6,




Determinant of J and Singularity

-1 sin@ —1, sin(@, + 6 -1, sin(@ + 6
J(HI,GZ):[ ,sin @, — 1, sin(6, +6,) , sin(6, 2))

l,cos@ +1,cos(6,+6,) [, cos(6+86,)

|J |=—1, cos(8, +8,)[l, sin 8, + 1, sin(8+6;)]
+1,5in(6, +8,)[1, cos 6, + 1, cos(8-+6;)]
=11, [sin(8, +6,) cos B, —sin(6, +6,) cos 6, ]

=/1l,sin 6,

+ At singular arm configurations 6,=0°. or 6,=180°

|J =1/, sin8, =0

Inverse Kinematics of Differential Motion

» Resolve end-effector velocity into velocities of individual
joints. Whenever Jacobian is not singular, inverse kinematics
can be solved as follows

q=J"%x or &q=J"&

» The solution is unique, unlike the inverse kinematics of end-
effector position, where multiple solutions exist.

» This mapping can be used for robot manipulator control as
proposed (Resolved Motion Rate Control. Daniel Whitney
1969]

(t) dx de T t)
3 : x
—»(+ )—s| Motion }—' Controller—»| Robot >

Resolver

J1

Motion Near Singularities

Consider the two-link "4
planner articulated robot 5
arm. We want to move
the endpoint at a
constant speed along a
path staring at point
A(2,0), go close to the
origin through B(g,0)
and C(0,¢), and reach
the final point D(0,2)

/

Singular
Configuration

Assume each arm link iSsingular

of unit length and obtaifenrfiguration Comment on ioint
the profiles of the omme |

individual joint velocitiesin B—-C .
velocities. segment of the motion

Motion Near Singularities cntd.

* By inverting velocity kinematics

1)

g _(—zl sing,—1, sin@+6,) —L,sin@, +92)j‘1(5j

6, l,cos@ +1,cos@+6,) [,cos@+86,) '

g) 1 ( [, cos@ +6,) L,sin(@, +6,) j{xj
6,) Ll,sing,\—1 cosf —1,cos@ +6,) —Isin6 —L,sin@+6,)\ y
g = cos@ +6,)x+sin@ +6,)y

[;sind,
b = —[/,cos@, +1,cos@ +6,)1x—[l, sing +1,sin@ +6,)]y
? 11, sin6), 16




Motion Near Singularities cntd.

_v,cos(6,+6,)+v sin(6, +6,)

» Very high joint 6,
velocities are
resulted at points 4 .
A and D, which ‘ sin 6,
are the arm’s
singular o
configurations Velocities
(6,=0°)

» Close to the
origin (6,=—180°), 0
the velocity of the
first joint
becomes very
large in order to
quickly turn the

sin 6,
3 v [cos(6))+cos(6, +6,)]+ v, sin[6, +sin(6, + 6,)]

0

arm from B to C,

1 (time)

Singularity Analysis
* When the arm is fully extended (6,=0°). For position A (6,=0°).
—2sin(@ =0 01 —sin(@ =0 0i
J - sin(6, ): l.,anszz sin(6, ): z
2cos(6, =0) 2j cos(6, =0) Jj
both joints generate endpoint velocity along the y-axis, thus, the motion is
restricted along vertical direction.

* When the arm is flexed (8,=180° B, and C positions)

—((,-1,)=0)sin G, 0 [,sin @

J, = ((h=1)=0)sm6, =| landJ, = 254
((/,=1,)=0)cos b, 0 —1,cos6,

First joint does not produce any contribution to endpoint motion

—1[ sin@ —1,sin(6,+6,) -1, sin(6, +6,)
J(91792):( 1 1 2 1 2 2 1 2J .

l,cos@ +1,cos(6,+6,) 1, cos(6 +86,)

Jacobian of a 3-Link Arm

« Lock joint 2 and 3, move joint
1 with unit ang rate and find
endpoint velocity — [J4]

Endpoint

» Lock joint 1 and 3, move joint
2 with unit ang rate and find
endpoint velocity — [J,]

» Lock joint 1 and 2, move joint
3 with unit ang rate and find
endpoint velocity — [Jg]

Joint 1

« Determine Jacobian as
J= [J1 Jz Js]

» Find singularities by |J|=0

Singularity and Redundancy

+ Sometimes, such singular configurations exist in the middle
of the workspace seriously degrading mobility and
manipulatability of the robot

» To overcome this difficulty, endpoint trajectories can be
planned away from singular configurations. Alternatively,
additional degrees of freedom should be included so that
even when some degrees of freedom are lost at certain
configurations, the robot can still maintain an adequate
number of degrees of freedom (Redundant Manipulators).

* To locate the endpoint at any position with any orientation, a
planner manipulator needs 3 variables (x,.y,.4,), whereas a
spacial manipulator needs 6 variables (x,,y,.z, ¢.,4,,¢.). Same
number of degrees of freedom are required for non-

redundent planner and special arms. »
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By Partial Differentiation .
n "C ‘}2
iy o ) . B 4.
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-l’:.\-i.';: ? . q-’l
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Xp =[1(q) & a,
. J ( ) . 3x1 q
X, = - ) 2 1
R XR q q }3 (Q) K Oqlsxl Oqﬁ
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Ty |= SI[CZ(C4C5C6_S4S6)_SZSSC6]_C1(S4C5C6+C4S6) r3 (9x1) &. 3x1 e .
" —=8,(C,CC=8,84) = C,85C . = 3 tee = & 96 (6x1)
q
n.) (CI-C,(C,C.C,—S,Co)—S,5.5,1-S,(~S,C,C, +C,Cy) “h, 6 /(9x6)
n, |=| S$i[-C,(C,CsCs = S,86) = $,8:C¢ 1+ €, (=5,CC¢ + C,Cy)
h: §,(C,Cs86 =8 ,56) = G558,
£ G (C,C,S85+5,C5) = S,8,55
n, =] $(C,C,S85+S,C5)+C,S,Ss
r, -S,C,C +C,C5) -
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Representations

«Cartesian 3«
_*Spherical 3«
| " «Cylindrical 3xt
xP '.--.

X —_ +Euler Angles 31
v «Direction Cosines 91
*Euler Parameters ax

Total Jacobian
Xp=Jy,(9)q (x] [J (q)} |
. | T q
X.R = JXR (q)q X JXR (q)

Cartesian & Direction Cosines

X(lz_\-l) = JI\'(C[)(12_\-6}CI(6.\-1)

Jacobian depends on the representation
and arm configuration
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